Once we split the soilspec data into the selected samples (pu$model) and the others (samples non selected pu$test), we can take them apart with our favorite math treatment (in this case SNV and Detrend):
pu_sel<- spectra_snvdt[pu$model,]pu_nonsel<- spectra_snvdt[ pu$test,]
matplot(as.numeric(colnames(pu_sel)),t(pu_sel),type = "l",
col = "blue", xlab = "wavelength",
ylab = "Log 1/R")
par(new=TRUE)
matplot(as.numeric(colnames(pu_nonsel)), t(pu_nonsel),
par(new=TRUE)
matplot(as.numeric(colnames(pu_nonsel)), t(pu_nonsel),
type = "l",
col = "red", xlab = " ", ylab = " ")
col = "red", xlab = " ", ylab = " ")
We can do the same for the "Y" matrix with the parameters, and look to one of the histograms (for clay for example):
No hay comentarios:
Publicar un comentario