PRCOMP
calculates the Standard Deviation with the standard divisor (N-1), so in the output
value “sdev”, we get the standard deviation of the column of the score matrix (n.a).
For
example:
head(X1_prcomp$sdev)3.21983981 0.54314465 0.41112799 0.08351649
0.06957348 0.02994683
The square
of this values are the variances
head(X1_prcomp$sdev^2)1.036737e+01 2.950061e-01 1.690262e-01 6.975004e-03
4.840470e-03 8.968124e-04
Using SVD,
we get an output value “d”, with the square root of the eigenvalues. Using the
same data:
head(X1_svd_d)39.9571612 6.7402479 5.1019641 1.0364124 0.8633842 0.3716303
The square
of these value are the “eigenvalues”:
head(X1_svd_d^2)1596.5747310 45.4309414 26.0300382 1.0741506 0.7454323 0.1381091
In order to get the “eigenvalues” for the PRCOMP, we have to consider that they are divided by (N-1). In our case we have 155 samples, so (N-1) = 154.
head(X1_prcomp$sdev^2*(154))
1596.5747310 45.4309414 26.0300382 1.0741506 0.7454323 0.1381091
To see the
% of explained variance we can use the value of each eigenvalue divided the sum
of all of them
head(X1_svd_d^2/sum(X1_svd_d^2)*100)95.59 2.72 1.559 0.064 0.045
This
information is provided with the summary
in PRCOMP:
summary(X1_prcomp)Importance of components:
PC1 PC2 PC3 PC4 PC5
Standard deviation 3.2198 0.5431 0.41113 0.08352 0.06957
Proportion of Variance 0.9559 0.0272 0.01559 0.00064 0.00045
Cumulative Proportion 0.9559 0.9831 0.99873 0.99937 0.99982
No hay comentarios:
Publicar un comentario