Here I show the statistics for the first four cycles, but we only consider the NIR segment:
This post checks how ISI Scan calculates the RMS, and we
can see that this RMS value is the RMS corrected by the Bias, so it tells us a
measure of the random noise.
I show a simple script showing this:
cycle1<-noise[1,]
cycle2<-noise[2,]
cycle3<-noise[3,]
cycle4<-noise[4,]
cycle2<-noise[2,]
cycle3<-noise[3,]
cycle4<-noise[4,]
options(digits=2)
rms1<-sqrt(mean((cycle1)^2)-(rowMeans(cycle1))^2)
rms2<-sqrt(mean((cycle2)^2)-(rowMeans(cycle2))^2)
rms3<-sqrt(mean((cycle3)^2)-(rowMeans(cycle3))^2)
rms4<-sqrt(mean((cycle4)^2)-(rowMeans(cycle4))^2)
rms1<-sqrt(mean((cycle1)^2)-(rowMeans(cycle1))^2)
rms2<-sqrt(mean((cycle2)^2)-(rowMeans(cycle2))^2)
rms3<-sqrt(mean((cycle3)^2)-(rowMeans(cycle3))^2)
rms4<-sqrt(mean((cycle4)^2)-(rowMeans(cycle4))^2)
> rms1 1 0.014 > rms2 2 0.016 > rms3 3 0.011 > rms4 4 0.015